Migration to Meta Sheet
U-Net: Convolutional Networks for Biomedical Image Segmentation
MICCAI 2015
Paper
- https://arxiv.org/pdf/1505.04597.pdf
Source Code Repository
- Official Model: https://lmb.informatik.uni-freiburg.de/resources/opensource/unet/
- Framework: Caffe
- Reproduce Model: https://github.com/jakeret/tf_unet
- Framework: Tensorflow
- Paper: https://arxiv.org/pdf/1609.09077.pdf in Astronomy and Computing 2017
- Documentation: https://tf-unet.readthedocs.io/en/latest/installation.html
- Reproduce Model: https://github.com/zhixuhao/unet
- Framework: Keras
- Reproduce Model: https://github.com/milesial/Pytorch-UNet
- Framework: PyTorch
Train Model Code, Test Model Code
- Train Model Code
- Reproduce Model(Tensorflow) Supports API
- https://tf-unet.readthedocs.io/en/latest/usage.html
- Reproduce Model(Keras)
- https://github.com/zhixuhao/unet/blob/master/trainUnet.ipynb
- Reproduce Model(Tensorflow) Supports API
- Test Model Code:
- Reproduce Model(Tensorflow) Supports API
- https://tf-unet.readthedocs.io/en/latest/usage.html
- Reproduce Model(Keras)
- https://github.com/zhixuhao/unet/blob/master/trainUnet.ipynb
- Reproduce Model(Tensorflow) Supports API
REMARK Reproduce Model(Keras) supports data augmentation docs
- https://github.com/zhixuhao/unet/blob/master/dataPrepare.ipynb
Pre-Trained Model
- Unsupported
Prediction Examples
Ref: https://arxiv.org/pdf/1505.04597.pdf
Citation
1 | @article{akeret2017radio, |
RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation
CVPR 2017
Paper
- https://arxiv.org/pdf/1611.06612.pdf
Source Code Repository
- Official Model: https://github.com/guosheng/refinenet
- Framework: MATLAB
- Reproduce Model: https://github.com/DrSleep/refinenet-pytorch
- Framework: PyTorch
- Reproduce Model: https://github.com/DrSleep/light-weight-refinenet
- Light Weight RefineNet
- Framework: PyTorch
- Reproduce Model: https://github.com/eragonruan/refinenet-image-segmentation
- Framework: Tensorflow
Train Model Code, Test Model Code
- Train Model Code: Supported
- Test Model Code: Supported
Pre-Trained Model
- Supported
- https://github.com/guosheng/refinenet/blob/master/libs/matconvnet/doc/site/docs/pretrained.md
Prediction Examples
Ref: https://arxiv.org/pdf/1611.06612.pdf
Ref: https://github.com/guosheng/refinenet
Citation
1 | @inproceedings{Lin:2017:RefineNet, |
PSPNet: Pyramid Scene Parsing Network
CVPR 2017, The Winner in 2016 ILSVRC Scene Parsing Challenge
Paper
- https://arxiv.org/pdf/1612.01105.pdf
Source Code Repository
- Official Model: https://github.com/hszhao/PSPNet
- Framework: Caffe
- Reproduce Model: https://github.com/Vladkryvoruchko/PSPNet-Keras-tensorflow
- Framework: Keras
- Reproduce Model: https://github.com/hellochick/PSPNet-tensorflow
- Framework: Tensorflow
Train Model Code, Test Model Code
- Train Model Code: Supported in Reproduce Model
- https://github.com/Vladkryvoruchko/PSPNet-Keras-tensorflow
- Test Model Code: Supported in Reproduce Model
- https://github.com/Vladkryvoruchko/PSPNet-Keras-tensorflow
Pre-Trained Model
- Supported
- Offical Model
- https://github.com/hszhao/PSPNet
- Offical Model
- Supported
- Reproduce Model
- https://github.com/Vladkryvoruchko/PSPNet-Keras-tensorflow
- Reproduce Model
Prediction Examples
Ref: https://hszhao.github.io/projects/pspnet/
Citation
1 | @inproceedings{zhao2017pspnet, |
Large Kernel Matters: Improve Semantic Segmentation by Global Convolutional Network
CVPR 2017
Paper
- https://arxiv.org/pdf/1612.01105.pdf
Source Code Repository
- Official Model: None
REMARK Large Kernel Matters를 Tensorflow로 구현한 코드 및 설명이 기술된 한국 블로그
- http://research.sualab.com/practice/2018/11/23/image-segmentation-deep-learning.html
Train Model Code, Test Model Code
- Train Model Code: Unsupported
- Test Model Code: Unsupported
Pre-Trained Model
- Unsupported
Prediction Examples
Ref: https://arxiv.org/pdf/1703.02719.pdf
DeepLab v3(+): Atrous SeparableConvolution for Semantic Image Segmentation
ECCV 2018
Paper
- DeepLab v3: https://arxiv.org/pdf/1706.05587.pdf
- DeepLab v3+: https://arxiv.org/pdf/1802.02611.pdf
Source Code Repository
- Official Model: https://github.com/tensorflow/models/tree/master/research/deeplab
- Framework: Tensorflow
Train Model Code, Test Model Code
- Train Model Code: Supported
- Test Model Code: Supported
Pre-Trained Model
- Supported
Prediction Examples
Ref: https://github.com/tensorflow/models/tree/master/research/deeplab
Citation
1 | @inproceedings{deeplabv3plus2018, |
Inplace ABN: In-Place Activated BatchNorm for Memory-Optimized Training of DNNs
CVPR 2018
Paper
- https://arxiv.org/pdf/1712.02616v3.pdf
Source Code Repository
- Official Model: https://github.com/mapillary/inplace_abn
- Framework: PyTorch
Train Model Code, Test Model Code
- Train Model Code: Supported
- Test Model Code: Supported
Pre-Trained Model
- Supported
Citation
1 | @inproceedings{rotabulo2017place, |
TernausNetV2: Fully Convolutional Network for Instance Segmentation
2nd place in CVPR 2018 DeepGlobe Building Extraction Challenge
Paper
- http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w4/Iglovikov_TernausNetV2_Fully_Convolutional_CVPR_2018_paper.pdf
Source Code Repository
- Official Model: https://github.com/ternaus/TernausNetV2
- Framework: PyTorch
Train Model Code, Test Model Code
- Train Model Code: Unsupported
- Test Model Code: Unsupported
Pre-Trained Model
- Unsupported
Prediction Example
Ref: https://github.com/ternaus/TernausNetV2
Citation
1 | @InProceedings{Iglovikov_2018_CVPR_Workshops, |
Automatic Instrument Segmentation in Robot-Assisted Surgery Using Deep Learning
ICMLA 2018, Wining solution and its improvement for MICCAI 2017 Robotic Instrument Segmentation Sub-Challenge
Paper
- https://arxiv.org/pdf/1803.01207.pdf
Source Code Repository
- Official Model: https://github.com/ternaus/TernausNetV2
- Framework: PyTorch
Train Model Code, Test Model Code
- Train Model Code: Supported
- Test Model Code: Supported
Pre-Trained Model
- Supported in https://drive.google.com/drive/folders/13e0C4fAtJemjewYqxPtQHO6Xggk7lsKe
Prediction Example
Ref: https://github.com/ternaus/robot-surgery-segmentation
Citation
1 | @article{shvets2018automatic, |